Micro-invasive approach to controlling white spot lesions

Prof. Marcio Garcia dos Santos & Guilherme Martineilli Garone

Carious enamel lesions have a superficially intact surface but considerable loss of minerals below. The porosities inside the lesion body result in the typically whitish appearance of these lesions, so-called white spots.3 Carious enamel lesions on smooth surfaces are a frequent side-effect of orthodontic treatment with fixed appliances.1 Although adhesively bonded brackets simplify orthodontic treatment, maintaining sufficient hygiene is significantly complicated during treatment, causing considerable plaque accumulation and in many cases the formation of carious lesions in these areas.1,4

Even though the progression of these lesions after removal of the brackets may be inhibited with preventive measures, such as topical fluoridation, the persistence of white spot lesions in the visible areas frequently leads to severe aesthetic impairment.5

The standard treatment for white spot lesions includes topical fluoridation and improvement of the patient’s oral hygiene in order to promote remineralisation of the demineralised enamel.5 Ten years ago a research group at the Charité hospital in Berlin in Germany began developing procedures and materials to control early carious lesions by micro-invasive means, reducing the amount of tooth substance that has to be sacrificed to the minimum.5 A novel alternative approach to the treatment of white spot lesions, caries infiltration, is based on the concept of sealing the micro-porosities of the lesion body and thereby inhibiting the substrate supply to inhibit the progression of the lesion. In randomised controlled clinical trials, this approach was proven to be clinically effective in halting caries progression.6,7

The hyper-mineralised surface layer is removed with 15% hydrochloric acid. In the next step, a specially developed low-viscosity resin is applied to the lesion to infiltrate it, driven by capillary forces. Since the capillaries in a carious lesion are extremely thin, a penetration time of 5 minutes is required to ensure complete infiltration of the lesion. Caries infiltration creates a diffusion barrier for cariogenic substrates inside the lesion, unlike sealing, which only forms a barrier on the surface. This procedure prevents the creation of artificial plaque retention areas and the formation of marginal gaps.

A positive side-effect of caries infiltration is that the enamel lesions will lose their whitish or brownish appearance, thereby neutralising unfavourable aesthetic effects. Once the micro-porosities have been filled, the light refraction behaviour adapts to that of the surrounding healthy enamel. The light refraction behaviour is described by the refraction index.

Aesthetic improvement of carious white spot lesions is based on the masking effect of these enamel lesions by resin infiltration, which optically adapts the appearance of the lesions to the surrounding healthy enamel. Active lesions or post-orthodontic white spots immediately after removal of fixed or orthodontic appliances often have a very thin surface layer. These types of lesions are therefore especially indicated for infiltration treatment and their aesthetic appearance can be improved easily and effectively.

Caries infiltration is an effective treatment in controlling white spot lesions of non-cavitated active carious lesions in vestibular areas.2

A list of references is available from the publisher.

Contact Info
Prof. Marcio Garcia dos Santos
is Assistant Professor in Restorative Dentistry at the University of São Paulo in Brazil. He can be contacted at marciogarciasantos@yahoo.com.br.

Contact Info
Prof. Guilherme Martineilli Garone
is Assistant Professor in Restorative Dentistry at the University of São Paulo in Brazil.